

Non-isolated Quasi-Resonant Buck LED Power Switch

FEATURES

- Integrated with 500V MOSFET
- Integrated HV VDD Power Supply Circuit
- No VDD Cap Design
- ±5% CC Regulation
- Quasi-Resonant for High Efficiency
- Very Low VDD Operation Current
- Built-in AC Line CC Compensation
- Build in Protections:
- Cycle-by-Cycle Current Limiting
- Leading Edge Blanking (LEB)
- LED Short/Open Protection
- On-Chip Thermal Fold-back (OTP)

APPLICATIONS

• High Power LED Lighting

GENERAL DESCRIPTION

DP951XK is a highly integrated power switch with Quasi-Resonant Buck (QR-Buck) constant current (CC) control for LED lighting applications without auxiliary winding.

DP951XKcombines a 500V power MOSFET and high voltage startup/IC supply circuit in one chip which reduced system design cost. The IC also adopts high accuracy current sensing control method which maintains accurate output current and good line/load regulation.

DP951XK integrates functions and protections of Current Limit and Leading-Edge Blanking, Under Voltage Lockout (UVLO), Cycle-by-cycle Current Limiting (OCP), Thermal Foldback (OTP),,LED Open/Short Protection, etc.

ORDERING INFORMATION

Part Number	Description
DP951XK	SOP-7, halogen free 4000pcs/reel

TYPICAL APPLICATION CIRCUIT

2022/9/26 DP951XK REV1.2 EN www.depuw.com

The content of the document is a trade secret, without permission, any organization or individual shall not be copied and disseminated in any form!

Shidenti

PRODUCT DESCRIPTION

Pin Configuration

> Pin Description

Pin Number	Pin Name	Description
1	GND	IC Ground
2,3	NC	No Function Pin and Left Floating in Application
4	HVDD	IC HV Supply Pin
5,6	Drain	Internal Power MOSFET Drain Terminal
7	CS	Internal Power MOSFET Source Terminal and Current Sensing Input Pin

Marking Information

DP951XK for product name:

XXXXXX The first X represents the last year,2014 is 4;The second X represents the month,inA-L 12 letters;The third and fourth X on behalf of the date,01-31said;The last two X represents the wafer batch code

Output Power Table

Part Number	Package	•	Current for 264Vac	Minimum Output
	J	36V output	72V output	Voltage
DP9511LK		100 mA	80 mA	
DP9511MK		130 mA	120 mA	
DP9511SK		180 mA	150 mA	201/
DP9511AK	SOP-7	220 mA	180 mA	
DP9511K		260 mA	230 mA	
DP9512K		300 mA	280 mA	<u> </u>
Absolute	e Maximu	m Ratings ^(Note)		

Absolute Maximum Ratings^(Note 1)

Value	Unit
-0.3 to 500	V
-0.3 to 650	V
-0.3 to 7	V
0.6	W
165	°C/W
150	°C
-65 to 150	°C
260	°C
3	kV
	-0.3 to 500 -0.3 to 650 -0.3 to 7 0.6 165 150 -65 to 150 260

Note1. Stresses listed as the above "Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to maximum rating conditions for extended periods may remain possibility to affect device reliability.

www.depuw.com

3

BLOCK DIAGRAM

RECOMMENDED OPERATION CONDITIONS

Parameter	Value	Unit
Operating Junction Temperature	-40 to 125	°C

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Тур.	Мах	Unit
Supply Volta	age Section(HVDD Pin)			10/		
$I_{VDD_{st}}$	Startup Current	VDD <v<sub>DD_Op</v<sub>	N.	300	700	uA
I _{VDD_Op}	Operation Current	Fsw=7KHz	80	150	300	uA
HV_{DD_ON}	HVDD Pin Startup Voltage		10	11.5	13	V
HV_{DD_OFF}	HVDD Pin Lockout Voltage	. 6	5.8	6.6	7.5	V
T_{off_min}	Minimum Off Time	(Note 3)	0.6	1.0	1.4	us
T _{on_max}	Maximum On Time	(Note 3)		50		us
T_{off_max}	Maximum Off Time	e	195	270	350	us
Current Sen	se Input Section (CS Pin)	5		11		<u></u>
T _{LEB}	CS Input Leading Edge Blanking Time	(Note 3)	300	500	700	ns
V _{cs(max)}	Current limiting threshold		590	600	610	mV
T _{D_OC}	Over Current Detection and Control Delay	(Note 3)		100		ns
Over Tempe	rature Protection(OTP Pin)					
T _{SD}	Thermal Shutdown Trigger Point	(Note 3)		120		°C
HV Startup	and Power Supply Section (Drain P	in)				
I _{HV}	HV Charging Current	Drain =20V		10		mA
I_{HV_leak}	HV Leakage Current		10	40	60	uA
Power MOS	FET Section (Drain Pin)	1	1		1	L

The content of the document is a trade secret, without permission, any organization or individual shall not be copied and disseminated in any form!

Non-isolated Quasi-Resonant Buck LED Power Switch

DP951XK

V _{BR}	Power MOSFET Drain Source Breakdown Voltage		500		V
		DP9511LK		26	Ω
		DP9511MK		22	Ω
P	Static Drain-Source On	DP9511SK		16	Ω
R _{dson}	Resistance	DP9511AK		12	Ω
		DP9511K		8.5	Ω
		DP9512K		5	Ω

erature r control of the sector of the secto **Note2.** Maximum Power dissipation $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$. As ambient temperature rises, P_{Dmax} will decrease. Note 3. Guaranteed by the Design.

CHARACTERIZATION PLOTS

7

OPERATION DESCRIPTION

DP951XKcombines a high voltage power MOSFET switch with a power controller in one chip. The built-in high precision CC control with high level protection features makes it suitable for LED lighting applications.

HVDD Supply

DP951XK integrates 650V high voltage power supply circuit by which the gate drive of the power MOSFET is directly powered without external VDD capacitor.

• Constant Current Control

In QR-Buck mode, the IC keeps CS peak current constant and starts new PWM cycle with valley switching. Therefore, high precision CC and high conversion efficiency can be achieved simultaneously. The average LED regulation output current is given by:

$$I_{CC_OUT}(mA) = \frac{1}{2} \bullet \frac{V_{cs(max)}}{R_{cs}} = \frac{300mV}{R_{cs}(\Omega)}$$

In the equation above,

Rcs--- the sensing resistor connected between the CS pin to IC GND.

Current Limit and Leading Edge Blanking

The current limit circuit samples the differential voltage between GND and CS Pin. When the. An internal leading edge blanking circuit is built in. During this blanking period (500ns, typical), the cycle-by-cycle current limiting comparator is disabled and cannot switch off the GATE driver.

• Demagnetization Detection

In DP951XK, the demagnetization detection circuit is designed internally without auxiliary winding, which reduces system design cost.

• Minimum and Maximum OFF Time

In DP951XK, a minimum OFF time (typically 1us) is implemented to suppress ringing when the power MOSFET is off. The maximum OFF time in DP951XK is typically 270us.

• On Chip Thermal Fold-back (OTP)

DP951XK integrates thermal fold-back function. When the IC temperature is over 120°C, the system output regulation current is gradually reduced, as shown in Fig.1.Thus, the output power and thermal dissipation are also reduced. In this way, the system temperature is limited and system reliability is also improved.

Fig.1

• Soft Totem-Pole Gate Driver

DP951XK has a soft totem-pole gate driver with optimized EMI performance.

PACKAGE DIMENSION

b b
BASE METAL
SECTION B-B

Complete L	Dim	nensions in Millimeters	
Symbol	Min	Nom	Мах
А	1.45	1.55	1.65
A1	0.10	0.15	0.20
A2	1.353	1.40	1.453
A3	0.55	0.60	0.65
b	0.38	-	0.51
b1	0.37	0.42	0.47
с	0.17	-	0.25
c1	0.17	0.20	0.23
D	4.85	4.90	4.95
Ĕ	5.85	6.00	6.15
E1	3.85	3.90	3.95
e	1.245	1.27	1.295
L	0.45	0.60	0.75
L1	-	1.050REF	-
L2	-	0.250BSC	-
Θ1-Θ4		12° REF	
h		0.40REF	
R		0.15° REF	
R1		0.15° REF	

SOP-7

2022/9/26 DP951XK_REV1.2_EN www.depuw.com

OFFICIAL ANNOUNCEMENT

Division I will ensure the accuracy and reliability of the product specification document, but we reserve the right to independently modify the content of the specification document without prior notice to the customer. Before placing an order, customers should contact us to obtain the latest relevant information and verify that this information is complete and up-to-date. All product sales are subject to the sales terms and conditions provided by our company at the time of order confirmation.

Division I will periodically update the content of this document. Actual product parameters may vary due to differences in models or other factors. This document does not serve as any express or implied guarantee or authorization.

The product specification does not include any authorization for the intellectual property owned by our company or any third party. With respect to the information contained in this product specification, we make no explicit or implied warranties, including but not limited to the accuracy of the specification, its fitness for commercial use, suitability for specific purposes, or non-infringement of our company's or any third party's intellectual property. We also do not assume any responsibility for any incidental or consequential losses related to this specification document and its use.

We do not assume any obligations regarding application assistance or customer product design. Customers are responsible for their own use of our company's products and applications. In order to minimize risks associated with customer products and applications, customers should provide thorough design and operational safety validation.

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Once discovered, the company will pursue its legal responsibility according to law and compensate for all losses caused to the company.

Please note that the product is used within the conditions described in this document, paying particular attention to the absolute maximum rating, operating voltage range, and electrical characteristics. The Company shall not be liable for any damage caused by malfunctions, accidents, etc. caused by the use of the product outside the conditions stated in this document.

Division I has been committed to improving the quality and reliability of products, but all semiconductor products have a certain probability of failure, which may lead to some personal accidents, fire accidents, etc.When designing products, pay full attention to redundancy design and adopt safety indicators, so as to avoid accidents.

When using our chips to produce products, Division I shall not be liable for any patent dispute arising from the use of the chip in the product, the specification of the product, or the country of import, etc., in the event of a patent dispute over the products including the chip.